

પરિપત્ર:

ભક્તકવિ નરસિંહ મહેતા યુનિવર્સિટીની સાયન્સ વિદ્યાશાખાનાં અભ્યાસક્રમ ચલાવતી તમામ સંલગ્ન કોલેજોનાં આચાર્ચશ્રીઓને સવિનય જણાવવાનું કે સાયન્સ વિદ્યાશાખા હેઠળનો NEP-૨૦૨૦ અંતર્ગતનો કેમેસ્ટ્રી વિષયનો (બી.એસસી (કેમેસ્ટી) વિશ્વ ઓનર્સ) નો સેમેસ્ટર-૩ અને સેમેસ્ટર-૪ નો અભ્યાસક્રમ આ સાથે સામેલ છે.

માનનીય કુલપતિશ્રીની મંજુરી અનુસાર સદર અભ્યાસક્રમ શૈક્ષણિક વર્ષ જુન,૨૦૨૪ થી અમલવારી કરવાની રહે છે. સાયન્સ વિદ્યાશાખાનાં અભ્યાસક્રમ ચલાવતી તમામ સંલગ્ન કોલેજો ધ્વારા તેની અમલવારી કરવા જણાવવામાં આવે છે.

ખાસ ફરજ પરના અધિકારી (એકેડેમિક)

ક્રમાંક/બીકેએનએમયુ/ એકેડેમિક/૭૫૯/૨૦૨૪ ભક્તકવિ નરસિંહ મહેતા યુનિવર્સિટી, સરકારી પોલીટેકનિક કેમ્પસ, ભક્તકવિ નરસિંહ મહેતા યુનિવર્સિટી રોડ, ખડીયા, જૂનાગઢ-૩૬૨૨૬૩ તા.૨૭/૦૬/૨૦૨૪

પ્રતિ,

 ભક્તકવિ નરસિંઢ મઢેતા યુનિવર્સિટી સંલગ્ન સાયન્સ વિદ્યાશાખાનાં અભ્યાસક્રમો ચલાવતી તમામ કોલેજોના આચાર્યશ્રીઓ તરફ....

નકલ સાદર રવાનાઃ-

- માન.કુલપતિશ્રી/કુલસચિવશ્રીનાં અંગત સચિવશ્રી.
- પરીક્ષા નિયામકશ્રી, ભક્તકવિ નરસિંફ મફેતા યુનિવર્સિટી, જુનાગઢ

નકલ રવાના જાણ તથા યોગ્ય કાર્યવાફી અર્થેઃ

• સીસ્ટમ મેનેજરશ્રી, આઇ.ટી.સેલ વિભાગ (વેબસાઇટ ઉપર પ્રસિદ્ધ થવા અર્થે.)

BHAKTA KAVI NARSINH MEHTA UNIVERSITY JUNAGADH

BOARD OF CHEMISTRY STUDIES FACULTY OF SCIENCE SYLLABUS FOR B.Sc (HONOURS) PROGRAMME (SEMESTER- III & IV) MAJOR/MINOR/MULTIDISCIPLINARY EFFECTIVE FROM JUNE, 2024

Major/Minor/Multidisciplinary

Syllabus of **B.Sc.** (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

SEMESTER-III & IV

Summary of the Major, Minor and MDC syllabus B.Sc Chemistry SEMESTER- 3

Sem	Category of Course	Course Code	Course Title	Course Level	Credit	Teaching Hrs.	SEE Marks	CCE Marks	Total Marks	SEE Evaluation Exam Duration	Page
3	Major-5	CHM205-2C	Intermediate Chemistry-205	5.0	4	4T	50	50	100	2.hrs.	1
	Major-6	CHM206-2C	Intermediate Chemistry-206	5.0	4	4T	50	50	100	2.hrs.	5
	Major-7	CHM207-2C	Intermediate Chemistry Practical-207	5.0	4	8P	50	50	100	4 (P) hrs	10
	MDC-3	MDC203-2C	Multidisciplinary Chemistry-203	5.0	4	3T+2P	50	50	100	2 hrs	13

Major/Minor/Multidisciplinary

Syllabus of **B.Sc.** (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

SEMESTER-III & IV

Summary of the Major, Minor and MDC syllabus B.Sc Chemistry SEMESTER- 4

Sem	Category of Course	Course Code	Course Title	Course Level	Credit	Teaching Hrs.	SEE Marks	CCE Marks	Total Marks	SEE Evaluation Exam Duration	Page
	Major-8	CHM208-2C	Intermediate Chemistry-208	5.0	4	4T	50	50	100	2.hrs.	21
4	Major-9	CHM209-2C	Intermediate Chemistry-209	5.0	4	4T	50	50	100	2.hrs.	25
	Major-10	CHM210-2C	Intermediate Chemistry Practical-210	5.0	4	8P	50	50	100	4 (P) hrs	29
	Minor-3	CHE203-2C	Minor Chemistry-203	5.0	4	3T+2P	50	50	100	2 hrs	32

Course Level	5.0	Internal Marks	50
Programme	B.Sc Chemistry	External Marks	50
Semester	III	Practical Internal	-
Category of Course	Major-5	Practical External	-
Course Credit	4	Prac. External Exam Duration	-
Teaching Hours	4T	Total	-
Course Code	CHM205-2C	External Theory Exam Duration	2 hrs
Course Title	Intermediate Chemistry-205		

Course Objectives:

- This course will provide an Intermediate level introduction to understand the important aspects of all the three main branches of Chemistry, viz, Inorgaic, organic and physical chemistry.
- It is designed to understand the physical and chemical properties of various inorganic transition elements. Also understand properties of some organic functional groups and the solutions.

Course Learning Outcomes: After completion of the course:

On completion of the course, the students will be able to understand:

- 1. Chemistry of the elements of first and inner transition series which includes their physical, chemical, magnetic and spectral properties. These elements have wide applications as super conducting materials.
- 2. The chemistry of the most abundant organic chemicals containing oxygen or nitrogen containing functional groups. These functional groups containing molecules are the starting material for various industrial synthesis and are used as solvents. These groups act as conjunctions or are the fundamental building blocks in synthesis.
- Phases of liquid and equilibrium distribution of components. This portion is an important part to undersand the industrial process protocols and chemistry. The physical properties of various miscible and immiscible liquid pairs
- 4. About the chemistry of some special compounds of p block elements like P,S and X and also understand the shape of compounds formed by inert gases.

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

SEMESTER-III & IV

 Some name reactions associated with some oxygen and nitrogen containing functional groups. The solute solvent association and dissociation and Nerst distribution laws with limitations.

Sem	Unit No.	Syllabi	Teaching Hours
	1	Chapter-1 Chemistry of the element of First Transition Series Introduction, Position in the periodic table, Electronic configuration, Reversal of energies of 3d and 4s orbitals, Physical properties such as atomic properties (atomic radii, Ionic radii, Ionization potential), Oxidation states, Metallic conductivity, Melting point & Boiling point, Density, Reducing properties, Tendency of formation of alloys, Catalytic properties, Magnetic and spectral properties, Oxides and oxo anions of transition metals, Calculation of magnetic moment of ion of 3d series metal.	10
3		Chapter-2 Chemistry of the element of First Inner Transition Series Introduction, Position in the periodic table, Occurrence & Important ores, Individual isolation by (A) Ion Exchange Method (B) Solvent extraction method, Electronics configuration with necessary explanation, Oxidation state & their stability, Magnetic properties, Color, Isotopes, Spectral properties, Lanthanide contraction, Misch metal, Uses of Lanthanides & their compounds.	05
	2	 Chapter-3 Alcohols, Phenols, Ethers and Epoxides Basic IUPAC nomenclature of alcohol, phenol and ether, Alcohols: Preparation (by the reduction of aldehyde, ketone, carboxylic acid, ester and Grignard reaction), Chemical properties (Reaction with sodium metal, Relative reactivity of 1°, 2°, 3° alcohols (Lucas test), Esterification and Oxidation by periodic acid and lead tetraacetate) Phenols: Preparation (Dow process and Cumene process), Chemical Properties; Electrophilic substitution reaction (nitration, sulphonation and bromination) Relative acidity of phenol, 	05

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

 alcohol and carboxylic acid, Factors affecting on acidity of phenol. Ethers: Preparation (Williamson synthesis) and Chemical reactions (with Cl₂ in light and dark, with conc. H₂SO₄, with hot and cold HI, hydrolysis) Epoxides: Reactions of epoxides with alcohols, ammonia derivatives and LiAlH₄. 	
 Chapter-4 Nitrogen Containing Functional Groups Basic IUPAC nomenclature of amine, nitro compounds, nitriles and isonitriles. Amines: Effect of substituent and solvent on basicity; Distinction between 1°, 2° and 3° amines with Hinsberg reagent, Preparation (from nitro compound, alkyl halide and Hoffmann degradation of amides) Chemical properties: Reaction with acid chloride, alkyl halide and nitrous acid. Chemical reaction of aniline (nitration, sulphonation and bromination) Diazonium 	05
 Salts: Preparation and their synthetic applications. Preparation and important reactions of nitro compounds, nitriles and isonitriles. Chapter-5 Aryl halides Basic IUPAC nomenclature of aryl halide, Preparation (including preparation from diazonium salts), Nucleophilic aromatic substitution (SNAr), Benzyne mechanism, Relative reactivity of alkyl, allyl/benzyl, vinyl and aryl halides towards nucleophilicsubstitution reactions 	05
 Chapter-6 Phase Equilibrium-I Introduction, Criteria of phase equilibrium, Explanation of terms: Phases, Components and Degrees of freedom of a system, Gibbs Phase Rule, Limitations of Phase Rule, Phase diagrams of one-component systems (Water, Sulphur, CO₂) Two component systems: Condensed Phase Rule, Eutectics system (Lead-Silver) and Park method of desilverization, Congruent melting point system (Mg – Zn) and Incongruent melting point system (Na - K). 	10
Chapter-7 Solutions Introduction, Factors affecting on solubility, Types of solutions, Types of liquid –liquid solutions	05

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

SEIV	ESTER	8-111	& IV

ſ

	Miscible Liquid Pair:	
	Ideal solutions and Raoult's law, Deviations from Raoult's law	
	(non-ideal solutions), Vapor pressure - composition curves of	
	ideal and non-ideal solutions, Temperature - composition	
	curves of ideal and non-ideal solutions, Distillation of ideal and	
	non-ideal solutions, Lever rule, Fractional column and Bubble	
	cap tower, Azeotropes.	
	Immiscible Liquid Pair:	
	Introduction, Principle of steam distillation and its	
	applications, Numericals,	
	Chapter-8 Chemistry of some special compounds of p-block	
	elements	
	Oxo acids of Phosphorus (H_3PO_2 , H_3PO_3 , H_3PO_4 , H_3PO_5 ,	
	$H_4P_2O_7$, $H_4P_2O_8$, $H_4P_2O_5$, $H_4P_2O_6$, HPO_3 , $(HPO_3)_3$ and	
	(HPO ₃)n,	
	Oxo acids of Sulphur (Sulphurous acid series, Sulphuric acid	
	series, Thionic acid series, Peroxy acid series,	05
	Oxo acids of halogen, Oxides of chlorine (Cl_2O , ClO_2 , Cl_2O_6 ,	00
	Cl_2O_7) and oxide of iodine (l_2O_5),	
	Inter-halogen compounds	
	Valence bond and VSEPR approach of following xenon	
	compounds; Oxides of xenon (XeO_3 , XeO_4), Fluorides of	
	xenon (XeF ₂ , XeF ₄ , XeF ₆), Oxy-fluorides of xenon (XeOF ₄ ,	
4	$XeO_2F_2, XeOF_2)$	
	Chapter-9 Name Reactions and Rearrangement-I	
	Name Reaction:	
	Reimer-Tiemann, Kolbe's Schmidt, Carbylamine reaction,	
	Hoffmann's exhaustive methylation	05
	Rearrangement:	
	Pinacol-Pinacolone Rearrangement, Fries Rearrangement,	
	Claisen Rearrangement,	
	Chapter-10 Nernst Distribution Law	
	Introduction, Nernst Distribution Law and its limitations,	
	Modified Nernst Distribution Law [Solute associate in the	05
	solvent, Solute dissociate in the solvent, Solute enters into	
	chemical reaction with solvent] Applications, Solvent	
	extraction, Numericals	

Course Level	5.0	Internal Marks	50
Programme	B.Sc Chemistry	External Marks	50
Semester	III	Practical Internal	-
Category of Course	Major-6	Practical External	-
Course Credit	4	Prac. External Exam Duration	-
Teaching Hours	4T	Total	-
Course Code	CHM206-2C	External Exam Duration	2 hrs
Course Title	Intermediate Chemistry-206		

Course Objectives:

- Develop a vision of wave characteristics of electron in an atom and molecular formation. Introduce to the industrial applications of inorganic chemicals like cement and fertilizer. Provide extensive coverage of structure and properties of carbonyl group containing functional groups in organic chemistry.
- Elaborate first law of thermodynamics and its applications. Introduce to the physical properties associated with the molecular structure. Also introduce to the partially miscible liquid and their phase equilibrium.

Course Learning Outcomes: On completion of the course, the students will be able to understand:

- The postulates of wave mechanics, structure of atom, understand the concept of molecular formation using concept of hybridization and draw the shape of molecules. The types of fertilizers Containing various primary nutrients like N,P,K their manufacture and composition and uses at various levels.
- The common chemistry of Carbonyl containing functional group like aldehydes, ketones, carboxylic acid their derivatives and active methylene compounds. Their physical properties, synthesis uses and interconversions into varied other useful compounds.

 The first law of Thermodynamics, various types of processes and heat exchanges. Behaviours of ideal gas, various enthalpy changes during process and solve problems associated with the enthalpy change.

Also understand physical properties like surface tension, viscosity, dipole moment and molecular structure.

4. The Chemistry of cement production. Starting from its raw material source and analysis, process chemistry, production, types of cement and end uses in various construction and industrial processes.

Also learn about the various named reactions and rearrangements associated with functional groups mainly containing carbonyl group and its synthetic applications.

The phase equilibria of partially miscible liquid pairs with different critical solution temperature. Formation of two and three pairs of partially miscible liquids and application of ternary liquid diagram.

Sem	Unit No.	Syllabi	Teaching Hours
3	1	Chapter-1 Wave mechanics-I Introduction of wave Mechanics, Postulates of wave Mechanics, Interpretation of ψ , ψ^2 , $\psi\psi^*$, Derivation of Schrodinger's equation in three dimensions (Cartesian Coordinates), Eigen function & Eigen value, Orthogonal & Normalized wave function, Concept of Molecular Orbital Theory, Characteristic of Molecular Orbital, Wave function of H ₂ ⁺ & H ₂ , Potential energy and Schrodinger's equation for H ₂ ⁺ & H ₂ , Derivation of normalized wave function of H ₂ ⁺ based on M.O.T., Derivation co efficient of wave function of sp, sp ² & sp ³ Hybridization with bond angle.	10
		Chapter-2 Fertilizer Introduction, Plant nutrients and its role, Classification and Properties of fertilizers, Nitrogenous fertilizers: Ammonium nitrate: Manufacture by Prilling method and Stengel method Ammonium sulphate: Manufacture from gypsum (Sindri Process) & Action as fertilizer	05

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

	 Urea: Manufacture from Ammonium carbide and Sindri process & Action as fertilizer Phosphate fertilizer: Manufacture of Normal super phosphate and Triple super phosphate Ammonium Phosphate: Manufacture of Mono ammonium phosphate and Diammonium phosphate 	
	Chapter-3 Aldehydes and ketones Introduction, Constitution of carbonyl group and reactivity, Preparation of aldehydes and ketones; Nucleophilic addition reactions (HCN, Grignard, Alcohol, NaHSO ₃ with mech) Nucleophilic addition-elimination reactions with ammonia derivatives with mechanism; Oxidations and reductions (Clemmensen, Wolff-Kishner, LiAlH ₄ , NaBH ₄ , with mech);	05
2	Chapter-4 Carboxylic Acids and their Derivatives Preparation, Physical properties and reactions of monocarboxylic acids: Preparation and reactions of acid chlorides, anhydrides, esters and amides; Comparative study of nucleophilic substitution at acyl group Mechanism of acidic and alkaline hydrolysis of esters, Claisen condensation, Dieckmann reaction.	05
	Chapter-5 Active methylene compounds Keto-enol tautomerism, Preparation and synthetic applications of diethyl malonate and ethyl acetoacetate.	05
3	Chapter-6 First Law of Thermodynamics Introduction, Limitations and advantages of Thermodynamics, Types of systems, Properties of system: Intensive and extensive properties, Types of processes, State and path functions, Exact and inexact differential concept of heat, Work and internal energy, First law of Thermodynamics: Statements, Mathematical derivation, Heat absorbed at constant volume, Perpetual machine of first kind, Enthalpy, Heat Capacity: Its types and derivation of relation (Cp – Cv = R), Isothermal reversible and irreversible work of ideal gas, Proof of: $W_{rev} > W_{irr}$ Relations between P – V, V – T and T – P for Adibatic process, Adiabatic reversible and irreversible work of ideal gas, Joule Thomson effect, Joule Thomson co-efficient of ideal gas, Zeroth Law (Only Statement and Explanation), Variation of enthalpy with temperature (Kirchhoff Equation), Numericals	10
	Chapter-7 Physical Properties and Molecular Structure	05

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

	Introduction	
	Types of Physical Properties: Additive and constitutive	
	properties	
	Surface Tension: Explanation of Surface Tension, Name of methods to determine surface tension, The Drop Weight	
	Parachor: Macleod Equation and $P_1/P_2 = V_1/V_2$, Atomic Parachor, To determine structure of (i) Quinine (ii) Benzene (iii) Isocyanides group (iv) Nitro group	
	Viscosity: Explanation (Briefly), unit and factors affecting the	
	viscosity Measurement of viscosity (derivation of $n_1 / n_2 = d_1 t_1$	
	$/ d_2 t_2$). Ostwald's Viscometer	
	Refractive Index and Refractivity . Introduction Specific	
	and Molecular Refractivity. Abbe Refractometer. Molecular	
	refractivity and chemical constitution	
	Optical Activity: Polarization of light. Optical activity.	
	Factors affecting angle of rotation, Specific rotation,	
	Polarimeter	
	Dipole Moment: Polar and non-polar molecule, Electric	
	polarization (Polarizability of molecules), The Mosotti	
	Clausious Equation, Kinds of molar polarization [Electron &	
	nuclear polarization, orientation polarization (permanent dipole	
	moment)]; Application of Dipole Moment: Identification of	
	polar and non-polar molecules,	
	Molecular Structure:	
	Mono atomic molecules, (ii) Diatomic molecules (iii)	
	Triatomic molecules (CO ₂ , H ₂ O, SO ₂) (iv) Tetratomic	
	molecules (NH ₃ , BCl ₃)	
	Numericals	
	Chapter-8 Cement	
	Introduction, Type of cement, Raw material for manufacture,	
	Cement rock beneficiation, Manufacturing processes of	05
	Portland cement, setting and hardening of Portland cement,	
4	Properties and uses of cement, Mortar and concrete, curing and	
	decay of concrete, RCC and its advantage	
	Vilapier -> Tvalle Reactions and Rearrangement-11	
	Aldol condensation Cannizzaro reaction Knoevenagel	05
	condensation Perkin reaction Wittig reaction Haloform	
	reaction, reaction, magnetic feation, material	

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

reaction, Baeyer Villiger oxidation.	
Rearrangement:	
Beckmann rearrangement, Benzil-Benzilic acid rearrangement,	
Hofmann bromamide degradation.	
Chapter-10 Phase Equilibrium-II	
Two components partially miscible liquid pairs: (1) Maximum	
critical solution temperature (2) Minimum critical solution	
temperature (3) Maximum and Minimum critical solution	
temperature, Influence of impurity on critical solution	
temperature, Three component partially miscible liquid system,	
Method of graphical presentation, Types of partially miscible	05
three liquid systems: One partially miscible pair: Effect of	
adding third component, Nature of tie line, Plait point, Binodal	
curve, Characteristics of diagram, A is added to binary system,	
A is constant and B and C varied, Formation of two pairs of	
partially miscible liquid, Formation of three pairs of partially	
miscible liquid, Application of ternary liquid diagram.	

Course Level	5.0	Internal Marks	50
Programme	B.Sc Chemistry	External Marks	50
Semester	III	Practical Internal	50
Category of Course	Major-7	Practical External	50
Course Credit	4	Prac. External Exam Duration	4 Hrs
Teaching Hours	8P	Total	-
Course Code	CHM207-2C	External Practical Exam Duration	4 hrs
Course Title	Intermediate Chemistry Practical – 207		

Course Objectives:

- Enable the students to carryout qualitative analysis of pure organic compounds using chemical and physical properties.
- Familiarize them with the volumetric methods of estimating the quantity of organic compound present and also acquaint them with the handful methods of common organic synthesis.

Course Learning Outcomes: After completion of the course:

- The learners will be able to individually carry out identification of unknown organic compound using various Tests like Preliminary tests, solubilities, elements present, functional groups present, their melting points/boiling points and derivatizations possible.
- 2. Practically carryout quantitative estimation of some known organic compound or functional groups like amide, ester, phenols, amines, carboxylic acid or compounds like glucose in a solution using simple chemical methods which can produce observable and measurable volume change during the process involved.
- **3.** Practically carry out and handle various types of organic synthetic reactions like Nucleophilic substitution reaction, Electrophilic aromatic substitution reaction, diazotization, and coupling reactions, oxidation reactions etc of simple compounds.

Major/Minor/Multidisciplinary Syllabus of B.Sc. (Honors) as per NEP-2020 Faculty of Science Effective from June 2024

Subject: Chemistry

Sem	Unit No.	Syllabi	Teaching Hours
		Organic Qualitative Analysis [Minimum 15 Practical]	
		[Minimum six bifunctional Organic Compounds should be	
		given]	
		Identification of an organic compound through the functional	60
	1	group analysis and	
		determination of melting point or boiling point	
		(Bifunctional organic compounds)	
	2	Organic Volumetric Estimation:	
		[Standard solution may be prepared by the students/given. Six-	
		Estimations may be given]	
		1. To determine the amount of -CONH2 in the given	
		Acetamide solution	
		2. To determine the amount of Phenol / m-cresol in the	
		given solution	24
		3. To determine the amount of Aniline / p-toludine in the	
3		given solution	
		4. To determine the amount of Ester in the given solution	
		5. To determine the amount of Glucose in the given	
		solution	
		6. To determine the amount of -COOH in the given	
	2		
	3	Organic Synthesis: [Minimum 9 syntheses should be done]	
		(Percentage of yield, crystallization, melting point)	
		1. Acetylation / Benzoylation	
		1. Accelutation of safetylic acid	
		2. Accelutation of annine	
		4. Reproved tion of principal	
		4. Benzovlation of annual	26
		3. Benzoylation of phenol	30
		1. Preparation of iodoform from ethanol	
		2 Preparation of iodoform from acetone	
		iii Aromatic Electronhilic Substitution	
		Nitration.	
		1 Preparation of m-dinitrobenzene	
		2. Preparation of nitro acetanilide.	

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

Halogenation:	
1. Preparation of p-bromo acetanilide,	
2. Preparation 2:4:6 -tribromo phenol	
iv. Diazotization / Coupling	
1. Preparation of methyl orange	
2. Preparation of methyl red	
v. Oxidation	
1. Preparation of benzoic acid from benzaldehyde	

Course Level	5.0	Internal Marks	50
Programme	B.Sc Chemistry	External Marks	50
Semester	III	Internal (T)	25
Category of Course	MDC-3	Internal (P)	25
Course Credit	4	Internal Practical Exam Duration	2 Hrs
Teaching Hours	3T+2P		
Course Code	MDC203-2C	External Theory Exam Duration	2 hrs
Course Title	Multidisciplinary Chen	nistry-203	

Course Objectives:

- Develop a vision of some industrial applications of chemistry. Enable brief outline of the environmental chemistry and pollution and its types.
- Also enable understand Qualitative and quantitative analytical methods of inorganic materials.

Course Learning Outcomes: On completion of the course, the students will be able to:

- Understand chemistry of fertilizers and apply their knowledge in identification, synthesis and end use of it.
- Work as a lab chemist or plant operator in cement industry with equipped knowledge of cement raw material, its analysis, processes and different types of end use.
- Know about the segments of environment, different types of environment pollution including air pollution and its main sources.
- Independently carry out inorganic qualitative analysis of salts and mixtures. Estimate amount of metal in a mixture of metal using the most accurate quantitative analytical method like gravimetric analysis.

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

Sem	Unit No.	Syllabi	Teaching Hours
	1	Chapter-1	
		Fertilizer	
		Introduction, Plant nutrients and its role, Classification and	
		Properties of fertilizers,	
		Nitrogenous fertilizers	
		Ammonium nitrate: Manufacture by Prilling method and	
		Stengel method	
		Ammonium sulphate: Manufacture from gypsum (Sindri	11
		Process) & Action as fertilizer	
		Urea: Manufacture from Ammonium carbide and Sindri	
		process & Action as fertilizer	
		Phosphate fertilizer: Manufacture of Normal super phosphate	
		and Triple super phosphate	
		Ammonium Phosphate: Manufacture of Mono ammonium	
		phosphate and Diammonium phosphate	
		Chapter-2	
		Cement	
		Introduction, Type of cement, Raw material for manufacture,	
3	2	Cement rock beneficiation. Manufacturing Processes of	11
		Portland cement, Setting and Hardening of Portland cement,	11
		Properties and uses of cement, Indian Standard Institute (ISI)	
		specification of cement, Mortar and concrete, curing and Decay	
		of concrete, RCC and its advantage, Uses of cement\	
	3	Chapter-3	
		Environmental Chemistry	
		Environment – definition and introduction, Segments of	
		(iv) Biosphere Environmental pollution and its types Air	11
		Pollution: Major sources of air pollution. Control of Air	
		pollution, Green House Effect, Photochemical smog, CFC and	
		ozone depletion, Acid rain, Sources and effects of NOX and	
		SOX,	
		Chapter-4	
		Principle of Inorganic Qualitative Analysis and	
	Λ	Gravimetric Analysis	
	+	Introduction, Preparation of Original Solution (OS), Concept of	12
		classification of cations (IP and Ksp) and role of Group	
		reagents	
		Explanation with chemical equations for the following	

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

A. Dry test for positive radicals	
(1) Charcoal test, (2) Cobalt nitrate test& (3) Flame test.	
B. Dry test for negative radicals (including use of various	
reagent papers)	
Principle of Gravimetric analysis: Factors affecting gravimetric	
analysis, Co-Precipitation and Post precipitation, Completeness	
of precipitation, Effect of acid and Temperature on solubility,	
Purity of ppt, Super saturation, Coagulation. Operation in	
gravimetric analysis like Solution formation, Precipitation,	
Filtration, Washing, Drying, Incineration, Weighing.	

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry SEMESTER-III & IV

Course: Multidisciplinary Chemistry Paper-3 [1-Credit Practical]

Gravimetric analysis

Sem	Unit No.	Syllabi	Teaching Hours
		Gravimetric Analysis:	
		Minimum six Gravimetric analysis exercises with three	
		containing impurities of Cu or Fe and three pure solutions	
		may be given.	
3		 Estimation of nickel (II) in a mixture of solution containing NiSO₄, CuSO₄ and free H₂SO₄ as Ni(DMG)₂ complex using Dimethylglyoxime (DMG). Estimation of copper as CuSCN Estimation of Fe⁺² as Fe₂O₃ in a solution containing a (mixture of CuSO₄ and) FeSO₄ NH₄SO₄ by precipitating iron as Fe(OH)₃. Estimation of Al (III) from the solution mixture containing CuSO₄ AlSO₄ and H₂SO₄ as Al₂O₃ or by precipitating with oxine and weighing as Al(oxine)₃ (aluminium oxinate) Estimation of Mn in a mixture of solution containing MnCl₂, CuCl₂ and HCl as Mn₂P₂O₇. Estimation of Zn in a mixture of solution containing 	30P
		 (aluminium oxinate) 5. Estimation of Ba as BaSO₄ in a mixture of solution containing BaCl₂ FeCl₃ and HCl. 6. Estimation of Mn in a mixture of solution containing MnCl₂, CuCl₂ and HCl as Mn₂P₂O₇. 7. Estimation of Zn in a mixture of solution containing ZnSO₄, CuSO₄ and H₂SO₄ as Zn₂P₂O₇. 	

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020 Faculty of Science Effective from June 2024 Subject: Chemistry SEMESTER-III & IV

Suggested Reading:

- 1. Principles of Inorganic chemistry Puri, Sharma & Kalia
- 2. Concise Inorganic Chemistry J. D. Lee
- 3. Advanced Inorganic Chemistry- Cotton and Wilkinson
- 4. Basic Inorganic Chemistry Gurdeep & Chatwal
- Organic Chemistry (Volume I, II & III) by S.M. Mukherji, S.P. Singh and R.P. Kapoor
- 6. A Text Book of Organic Chemistry (II Edition) by Raj K. Bansal
- 7. Name Reactions in Organic Synthesis by Dr. A.R.Parikh et. al
- 8. Reactions and Rearrangements by Gurdeep Chatwal
- 9. Essentials of Physical Chemistry, B. S. Bahl, G. D. Tli and Arun Bahl, S. Chand & Co.. New Delhi
- 10. Elements of Physical Chemistry, Late B.R. Puri, L. R. Sharma and Madan Pathania, Vishal Publishing Co. Jalandhar
- 11. Principles of Physical Chemistry, Samule H. Maron and Carl F. Prutton, Oxford & IBH Publishing Co. Pvt. Ltd. New Delhi
- 12. Physical Chemistry, B. K. Sharma, Goel Publication House. Meerut.
- 13. Quantum chemistry by A. K. Chandra
- 14. Basic Concept of Quantum Chemistry by R. K. Das.
- 15. Molecular Physical Chemistry by McQuarrie
- 16. Elements of Physical Chemistry, Samuel Glasstone and David Lewis, Macmillan & Co.
- 17. Engineering Chemistry by Jain and Jain
- 18. Industrial Chemistry by B.K. Sharma
- 19. Thermodynamics by Gurudeeep Raj
- 20. Thin Layer Chromatography by Egal Stall
- 21. Thermodynamics for Chemists by Samuel Glasstone
- 22. A Textbook of Quantitative Inorganic Analysis by A. I. Vogel
- 23. Inorganic inflictive analysis by Vogel and Gehani Parekh
- 24. Reigel's Handbook of Industrial Chemistry by James A. Kent
- 25. Fundamental of Analytical Chemistry by Skoog and West
- 26. Instrumental Methods of Chemical Analysis by B. K. Sharma
- 27. Instrumental Method of Chemical Analysis by Chatwal Anand
- 28. Analytical Chemistry by Dick
- 29. Electrometric Methods of Analysis by Browning
- 30. Principle of Instrumental Methods of Analysis by Skoog
- 31. Jack T. Ballinger; Gersshon J. Shugar. Chemical Technicians' Ready Reference Handbook, 5th Edition, 2011, ISBN:9780071745925, The McGraw-Hill com, Inc

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

SEMESTER-III & IV

INTERNAL EVALUATION SCHEME			
NO	Particulars	Marks	
1	Mid Semester Exam (Mandatory)	25	
2	Class Test	05	
3	Open book exam/test	05	
4	Open note exam/test	05	
5	Self-test/ Online test	05	
6	Essay/Article writing	05	
7	Quizzes/Objective test	05	
8	Class assignment	05	
9	Home assignment	05	
10	Reports Writing	05	
11	Research/Dissertation	05	
12	Case Studies	05	
13	Viva/Oral exam	05	
14	Group Discussion	05	
15	Role Play	05	
16	Paper presentation/Seminar	05	
17	Language Lab work	05	
18	Interview	05	
19	Craft work	05	
20	Co-curricular work	05	
21	Field Assignment	05	
22	Poster Presentation	05	
23	Attendance	05	
24	Project Work	05	
	Total	50	

Note: Sr.No.1 is mandatory. Select any five from Sr.No.2 to 24. Each Contains five marks. Student should secure 18 Marks for passing in internal Exam.

For Major paper 5, 6, 8, and 9: 25 Mid-term + 25 CCE + 50 External Theory = 100

For Major paper-7 and 10 (Practical): 25 Mid-term (Practical) + 25 CCE + 50 External Practical; Exam = 100

Ques. No.	Particulars	From which Unit	Marks
1	Any two out of 3 questions (5 marks each)	1	10
2	Any two out of 3 questions (5 marks each)	2	10
3	Any two out of 3 questions (5 marks each)	3	10
4	Any two out of 3 questions (5 marks each)	4	10
5	Any two out of 4 questions (5 marks each)	One question	10
		From Each Unit	
		Total Marks	50

Paper Style (For B.Sc. Chemistry SEM- 3, 4)

SEMESTER-IV

Course Level	5.0	Internal Marks	50
Programme	B.Sc Chemistry	External Marks	50
Semester	IV	Practical Internal	-
Category of Course	Major-8	Practical External	-
Course Credit	4	Prac. External Exam Duration	-
Teaching Hours	4T	Total	-
Course Code	CHM208-2C	External Exam Duration	2 hrs
Course Title	Intermediate Chemistry-208		

Course Objectives:

- Enable learners to be aware about the coordination and organometallic compounds, their structure and special chemistry.
- Emphasize on the study of the property of molecular symmetry and stereochemistry of inorganic and organic molecules. Understand the second law of thermodynamics and free energy change with chemical equilibrium.

Course Learning Outcomes: After completion of the course the learner will be able to:

- 1. Understand types of ligands, coordination compounds and their isomerism including geometrical and optical. Understand the uses of coordination compounds in bilogcal systems and other applications.
- Know about various types of organ metallic compounds and their classification based on heptacity. They will also understand nonclassical bonded organometallic compounds and their bonding.
- 3. Understand property of symmetry in molecules. Their classification based on symmetry elements present. They will also be able to construct the group multiplication table for molecules based on the possible symmetry operations.
- 4. Understand the limitations of first law of thermodynamics, about spontaneous processes and energy changes. Also the concept of entropy and solve problems based on the second law of thermodynamics.

- 5. Calculate free energy changes with various parameters and predict the direction of chemical equilibrium of various spontaneous processes.
- 6. Classify oils and fats and identify the properties which can be exhibiged by various types of oils. Carry out various types of hydrogenations of oils. Carryout analysis of oil and fats like saponification value, iodine value etc.
- 7. Understand stereochemical terms, classifications of stereoisomers their nomenclature based on various methods. Concept of conformations in cyclic systems to explain their stability. Draw various projection formulae of types of conformations of cyclohexane, deduce their symmetry point group, write and compare the factors affecting their relative stability, calculate relative energy and draw energy level diagram. Also calculate relative stability of conformations of monosubstituted cyclohexane.
- 8. Understand law of active mass, Vant Hoff isotherm, clausis Clapeyron equation and solve numerical problems.

Sem	Unit No.	Syllabi	Teaching Hours
4	1	 Chapter-1 Basics of Co-ordination chemistry Introduction of co-ordination compounds, Double salt, mixed salt and complex compounds, Types of complex compounds, Classification of ligands (Based on charge and denticity), π-acid ligands, Ambidentate ligands, Chelating ligands, Bridge ligands and Flexi dentate ligands, co-ordination number, co-ordination polyhedron, Oxidation number of central metal atom, IUPAC nomenclature of co-ordination compounds, Warner co-ordination theory and its failure, Co-ordination number and geometry related to co-ordination number, Isomerism in co-ordination compounds; 1) Structural isomerism 2) Stereo isomerism In structural isomerism- ionization 2) hydration 3) co-ordination 4) co-ordination positions 5) polymerization 6) linkage isomerism 7) Ligand isomerism, In stereo isomerism- Geometrical; Cis-trans isomerism in ML4 and ML6 types of complexes 	10

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

		2) Optical isomerism	
		Application of co-ordination compounds in biological	
		systems, analytical chemistry, extraction of gold and silver,	
		purification of metals, industry, medical field.	
		Chapter-2 Organometallic compounds	
		Introduction, Classification based on nature of M-C Bond and	
		hapticity. Preparation, Properties and uses of Organo lithium	
		compounds and Organo magnesium compounds, Preparation,	05
		bonding & structure of (1) Zeise's Salts $(d\pi-p\pi)$ bonding, (2)	
		Tri Methyl Aluminium (3c-2e) bonding and (3) Ferrocene	
		(Sandwich structure-Moffit -without orgal diagram).	
-		Chapter-3 Molecular Symmetry	
		Introduction, Symmetry elements and symmetry operations	
		with illustrations, Concept and properties of group, Products of	
	2	symmetry operation, Symmetry point group classification flow	15
	-	chart [Cav, Dah, Cs,, Ci, C1, Td, Oh, Ih, Dnh, Dnd Dn, Cnh Cnv	15
		S_{2n} , C_n], Construction of group multiplication tables for C_{2v} ,	
		C_{3v} and C_{2h} point groups, Definition & calculation of Order (h)	
		of point groups.	
		Chapter-4 Second Law of Thermodynamics	
		Limitations of first law of thermodynamics, Spontaneous	
		process, Carnot cycle and theorem, Statements of second law	
		of thermodynamics, Perpetual machine of second kind	
		(briefly), Concept of entropy and definition of entropy, ΔS in	10
		reversible & irreversible (spontaneous) process, ΔS in ideal	10
		gases, ΔS of mixture of ideal gas, ΔS in physical	
	3	transformations and heating of the substance, Entropy and	
	•	second law of thermodynamics, Physical significance of	
		entropy, Numerical based on theory.	
		Chapter-5 Free Energy and Chemical Equilibrium-I Free	
		Energy: its significance and variation with P and T, Work	
		function: Its physical significance and variation with V and T,	05
		ΔG for ideal gases, Gibbs Helmholtz equation and its	05
		applications, Criteria for chemical equilibrium (According to	
		$\Delta G = \Delta H - T\Delta S$), Numerical based on theory.	
		Chapter-6 Oils and Fats	
	4	Introduction, Properties of oil and fats, Classification,	05
		Hydrogenation of oil: (i) Optimum condition for the	05
		hydrogenation process and (ii) Prenaration of Nickel catalyst	

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

Process for hydrogenation of oil: (i) Dry process and (ii) Wet process,	
Analysis of oil and fats: (i) Saponification value (ii) Acid value	
(iii) Iodine value (WIJS method) and (iv) Reichert - Meisel	
value.	
Chapter-7 Stereochemistry	
Difference between Asymmetric-Dissymmetric, Enantiomers-	
Diastereomers, Methods of Resolution, Racemic	
modification and its types, Anomers and epimers.	
Stereochemistry of compounds with 1 and 2 asymmetric	
carbon atoms (similar and dissimilar) threo, erythro and meso	
forms and R, S Nomenclature.	05
Conformations of cyclohexane: Explanations of α/β and	03
axial/equitorial bonds, Newmann and conformational	
projections, comparison of various conformations of	
cyclohexane w.r.t Shape, Symmetry, intramolecular	
interactions and relative energy level diagram.	
Conformations of Methyl cyclohexane: Comparison of relative	
stability.	
Chapter-8 Free Energy and Chemical Equilibrium-II	
Law of active mass, Vant Hoff isotherm (By equilibrium box	05
and chemical potential method), Vant Hoff isochore, Clausius -	03
Clapeyron equation, Numerical based on theory.	

Course Level	5.0	Internal Marks	50
Programme	B.Sc Chemistry	External Marks	50
Semester	IV	Practical Internal	-
Category of Course	Major-9	Practical External	-
Course Credit	4	Prac. External Exam Duration	-
Teaching Hours	4T	Total	-
Course Code	СНМ209-2С	External Exam Duration	2 hrs
Course Title	Intermediate Chemistry-209		

Course Objectives:

- Expose in detail about the applications of wave mechanisms to atomic structure and property. Introduce to some daily applications of chemistry like soaps and detergents and bioinorganic chemistry.
- Introduce to the Heterocyclic compounds, natural product molecules like alkaloids, terpenoids and named reactions, rearrangement and reagents closed associated with it.
 Provide depth of third law of thermodynamics, chemical kinetics and partial molar properties.

Course Learning Outcomes: After completion of the course the following learning outcomes are expected:

 The students would be well convergent to the terminologies used in wave mechanics and understand approach of wave mechanics to interpret energy levels and behaviour of electron in an atom. Calculate energy of electron in various energy levels.
 The students will be well every about the chemistry of seen and detergent. Starting

The students will be well aware about the chemistry of soap and detergent. Starting from preparation of these chemicals to their mechanism of action.

 Students will understand chemistry of the most important class of naturally occurring organic compound like alkaloids and terpenoids. Starting from their isolation, structural elucidation, synthesis and applications. They will also be able to write and carryout some known organic named reactions, rearrangements and reagents.

- 3. Learners will study the third law of thermodynamics and its applications. Leaner will be able to calculate absolute entropies and solve problems related to the processes undergoing free energy and entropy change. They will have thorough understanding of the rate of various types of reactions and factors affecting it. Molecularity and order of the reaction and various methods used to determine the order of the reaction. Theories of reaction rate and solve numerical based on those theories.
- 4. The students would have understood the importance and applications of various metals and their complexes in biological systems. Also studied reasons of their toxicity.

They would be well convergent with the most important class of organic compounds. Learners will know five and six membered (Pyridine) monocyclic heterocyclic compounds, their structure, stability, relative basicity, preparations and chemical properties including substitution reactions of mono heterocyclic compounds.

They would have understood the partial molar properties and their determination using various methods. Understand physical significance of chemical potential and its variation with temp and pressure. They would be able to solve problems using Henry's law, Raoult's law and Nernst Distribution Law.

Sem	Unit No.	Syllabi	
4	1	Chapter-1 Wave Mechanics-II Basic concepts, Operators algebra (addition, subtraction, multiplication), commutative property, linear operator, commutation operator, the operator DEL & DEL SQUERED, momentum operator, Hamiltonian operator, Particle in one dimensional box; Wave equation and energy related to a particle moving in one dimensional box, Energy levels and interpretation of energy equation, Normalization and orthogonally of wave function, Particle in three-dimensional box; Derivation of normalized wave equation, Energy related with it, Degeneracy, Example based on energy of 1s orbital, normalization, orthogonally, particle in one and three dimensional box and degeneracy.	10

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

	Chapter-2 Soap and Detergent	
	Introduction, Raw materials for manufacture, Methods for	
	manufacture of soap (i) Batch process (ii) Continuous process	
	Types of soap: Toilet soap, transparent soap, shaving soap,	
	Neem soap,	
	Introduction to detergents, Principal group of synthetic	a -
	detergents, Bio-degradability of surfactants, Classification of	05
	surface-active agents, Anionic detergents,	
	Manufacture of anionic detergents; (i) Oxo Process (ii) Alfol	
	Process, (iii) Welsh Process	
	Cationic detergents, Non – Ionic detergents, amphoteric	
	detergents	
	Chapter-3 Alkaloids	
	Introduction, Occurrence, Classification and Isolation, General	
	method of proving structure of alkaloids, Constitution,	
	Properties and synthesis of	05
	(i) Coniine	
	(ii) Nicotine and	
	(iii) Papaverine	
	Chapter-4 Terpenoids	
2	Introduction, Occurrence, Classification, General	
2	characteristics of Terpenoids, Isoprene & special Isoprene	05
	Rule,	
	Constitution and Synthesis of Citral and α -Terpineol	
	Chapter-5 Name reactions, Rearrangements and Reagent	
	Reactions: Arndt Eistert reaction and Bischler Napieralski	
	reaction	07
	Rearrangements: Curtius rearrangement and Benzoin	05
	Condensation	
	Reagent: Lithium Aluminium hydride LiAlH4 and Sodamide	
	Chapter-6 Chemical Kinetics	
	Concept of Chemical Kinetics, Rate of chemical reaction,	
	Dependence of rate of reaction on concentration, Factors	
	affecting on rate of chemical reaction, Rate law and rate	
3	constant, Order of the chemical reaction, Molecularity of	10
•	elementary & complex reactions, Molecularity versus order of	10
	reaction, Zero order reaction, Integrated rate equation of first	
	order reaction, Second order reaction, Methods for	
	determination of order of reaction, Arrhenius equation (Without	
	Derivation), Concept of activation energy.	

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

	Theories of reaction rate: Collision theory of reaction rate, Absolute rate or activated complex theory, Numericals based	
	on theory.	
	Chapter-7 Third law of Thermodynamics Introduction, Nernst heat theorem, Third law of	
	thermodynamics, Determination of absolute entropies of solids, liquids and gases, Applications of third law of thermodynamics (ΔS^0 , ΔG^0 and equilibrium constant of chemical reaction), Tests of third law of thermodynamics, Residual entropy, Numerical based on theory.	05
	Chapter-8 Bio-Inorganic Chemistry Metalloporphyrin, Structure and roll of Haemoglobin in biological system, Myoglobin, Structure of chlorophyll and its importance, Toxicity of arsenic, mercury, lead and cadmium, Reason for toxicity.	05
4	Chapter-9 Heterocyclic Compounds-I Classification and nomenclature of mono heterocyclic compound based on size of ring, Aromaticity in 5 membered (Furan, Thiophene and Pyrrole), Preparation of Furan, Thiophene, and Pyrrole, Chemical Properties (Electrophilic Substitution Reaction) of Furan, Thiophene and Pyrrole Nitration, Sulphonation, Acetylation, Chlorination, Reaction with Organometallic Compounds, Aromaticity of Pyridine, Basicity of Pyridine, Relative basicity of Pyridine, Pyrrole and Aliphatic amines Preparation of Pyridine from acetylene, Hantzsch's synthesis, Chemical Properties of Pyridine: Electrophilic and Nucleophilic Substitution Reaction.	05
	Chapter-10 Partial Molar Properties Introduction, Definition of partial molar property, Concept of chemical potential, Physical significance (properties) of chemical potential, Derivation of Gibbs-Duhem equation, Variation of chemical potential with temperature and pressure, Determination of partial molar properties by method of intercept, Applications of chemical potential (Henry's law, Rault's law and Nernst's distribution law), Numerical based on theory.	05

Course Level	5.0	Internal Marks	50
Programme	B.Sc Chemistry	External Marks	50
Semester	IV	Practical Internal	50
Category of Course	Major-10	Practical External	50
Course Credit	4	Prac. External Exam Duration	4 Hrs
Teaching Hours	8P	Total	-
Course Code	CHM210-2C	External Practical Exam Duration	4 hrs
Course Title	Intermediate Chemistry	y Practical – 210	

Course Objectives:

• To enable student to be able to carry out quantitative and qualitative analysis of some chemicals independently.

Course Learning Outcomes: After completion of the course:

- 1. The students would be able to carry out analysis of a mixture containing positive and negative radicals which collectively made a soluble solution.
- Carry out physicochemical exercises to study the rate of reaction of various reactions like hydrolysis of ester, reaction between potassium persulphate and KI, KBrO3 ad KI, determine the energy of activation of some reactions, partition coefficient of an acid between two a polar and non-polar liquid etc
- 3. The learner would be able to determine concentration of various ions using iodo/iodimetrically. They will also be able to estimate some metal ions quantitatively using complexometric titrations. They will be able to carry out water analysis and some analysis using redox titrations.

Major/Minor/Multidisciplinary Syllabus of B.Sc. (Honors) as per NEP-2020 Faculty of Science Effective from June 2024

Subject: Chemistry SEMESTER-III & IV

Sem	Unit No.	Jnit No. Syllabi	
		Inorganic Qualitative Analysis:	
4		[Minimum fifteen inorganic mixtures should be given] Qualitative Analysis of an inorganic mixture containing four radicals (Including soluble PO ₄ ⁻³), [Excluding PO ₄ ⁻³ (insoluble), CrO ₄ ⁻² , Cr ₂ O ₇ ⁻² , AsO ₃ ⁻³ , AsO ₄ ⁻³ , BO ₃ ⁻³ and S ⁻²]	60
		 Physicochemical Exercise (Seven exercises may be given) To determine the specific reaction rate of the hydrolysis of methyl acetate / Ethyl acetate catalyzed by H+ ion at room temperature. To study the rate of reaction between K2S2O8 and KI. To study the rate of reaction between KBrO3 and KI. To determine the temperature coefficient and Energy of activation for the hydrolysis of ester at two different temperatures. To determine the temperature coefficient and Energy of activation for the reaction between K2S2O8 and KI at two different temperatures. To determine the temperature coefficient and Energy of activation for the reaction between K2S2O8 and KI at two different temperatures To determine the rate of adsorption of the given organic acid using animal charcoal. Distribution Law: To study the partition co-efficient of benzoic acid between water and benzene / kerosene and hence study the molecular condition of benzoic acid in the solution. 	28
		Inorganic Volumetric Analysis [Eight estimations should be given] i. Iodometry and Iodimetry	
			 (a) Estimation of Cu+2 and CuSO4.5H2O in the given CuSO4.5H2O using 0.05N Na2S2O3.5H2O solution. (b) Estimation of As+3 and As2O3 in the given As2O3 using 0.05N Na2S2O3.5H2O solution.

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

ii. Complexometric titration:	
1. Estimation of the amount of Ni ⁺² in the given NiSO ₄ .7H ₂ O	
solution using 0.02 N EDTA solutions.	
2. Estimation of the amount of Mg^{+2} and Pb^{+2} in the given	
solution containing a mixture of Mg^{+2} and Pb^{+2} using 0.02 N	
EDTA solution	
3. Estimation of the amount of Ca^{+2} and Zn^{+2} in the given	
solution containing a mixture of Ca^{+2} and Zn^{+2} using 0.02 N	
EDTA solution	
4. Estimation of the amount of Fe^{+3} and Cr^{+3} in the given	
solution containing a mixture of Fe^{+3} and Cr^{+3} using 0.02 N/	
0.01 M Pb(NO ₃) ₂ and 0.02 N/ 0.01 M EDTA solution.	
iii. Redox titration	
1. Determination of the amount of NO_2^{-1} in the given NaNO ₂ or	
KNO ₂ solution by reduction method using 0.1 N KMnO ₄	
solutions.	
iv. Water Analysis	
1. To determine the amount of chloride in the given sample of	
water using 0.02 N AgNO _{3.}	
v. To determine the purity of NaHCO3 in the given sample.	

Course Level	5.0	Internal Marks	50
Programme	B.Sc Chemistry	External Marks	50
Semester	IV	Internal(T)	25
Category of Course	Minor-3	Internal (P)	25
Course Credit	4	Internal Practical Exam Duration	2 Hrs
Teaching Hours	3T+2P		
Course Code	CHE203-2C	External Theory Exam Duration	2 hrs
Course Title	Minor Chemistry-203		

Course Objectives:

- To acknowledge the students with oils and fats and some applications of chemistry like soaps and detergents.
- Also, enable them to be able to understand environment and sources of various types pollutions. Also, familiarize them with the most versatile analytical technique like chromatography.

Course Learning Outcomes: After completion of the course:

- 1. The students will be able to classification and properties of oil and fats. Hydrogenation of oil and analysis of oil and fats.
- 2. They will also be familiar with the types of soaps and detergents, classification of soaps and detergents, their raw materials, manufacturing processes and some estimating parameters and chemicals methods used to determine it.
- 3. Learners will be well educated with the environmental aspects in chemistry. The types of pollutions and aware about the chemicals and other sources creating it.
- 4. The students will be well convergent with the principle of various chromatographic technique of separation of materials and its applications in various fields.

BHAKTA KAVI NARSINH MEHTA UNIVERSITY Major/Minor/Multidisciplinary Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry SEMESTER-III & IV

Sem	Unit No.	Syllabi	
		Chapter-1 Oils and Fats	
		Introduction, Properties of oil and fats, Classification,	
		Hydrogenation of oil: i) Optimum condition for the	
		hydrogenation process and ii) Preparation of Nickel catalyst,	
	1	Process for hydrogenation of oil: i) Dry process and ii) Wet process,	11
		Analysis of oil and fats: i) Saponification value ii) Acid value	
		iii) Iodine value (WIJS method) and iv) Reichert - Meisel	
		value.	
		Chapter-2 Soap and Detergent	
		Introduction, Raw materials for manufacture, Methods for	
		manufacture of soap (i) Batch process (ii) Continuous process	
		Types of soap: Toilet soap, transparent soap, shaving soap,	
		Neem soap, Introduction to detorgants. Principal group of synthetic	
	2	detergents Bio-degradability of surfactants Classification of	11
		surface-active agents. Anionic detergents.	
		Manufacture of anionic detergents; (i) Oxo Process (ii) Alfol	
		Process, (iii) Welsh Process	
		Cationic detergents, Non – Ionic detergents, amphoteric	
		detergents	
	3	Chapter-3	
		Environmental Chemistry Environment – definition and introduction Segments of	
		environment (i) Atmosphere (ii) Hydrosphere (iii) Lithosphere	
		(iv) Biosphere, Air Pollution: Major sources of air pollution,	11
		Control of Air pollution, Green House Effect, Photochemical	
		smog, CFC and ozone depletion, Acid rain, Sources and effects	
		of NOX and SOX, Environmental pollution and its type.	
		Chapter-4 Chromatography	
		Introduction, Classification of chromatography - types of	
	4	chromatography, Principle of Chromatography	12
		Column chromatography: Principle, Adsorbents,	14
		Preparation of column, Method, Separation of green leaf	
		pigment,	

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

Paper chromatography: Introduction, Principle, Types
of Paper Chromatography (Ascending and Descending,
Two dimensional; Circular), Migration parameters (Rf
value and Rx value), Spotting and Visualization.
Separation of amino acids and metalions (Fe ⁺ , Co ⁺² ,
Ni ⁺²⁾ mixture using spray reagent ninhydrine and aniline
phthalate
TLC: Introduction, Principle, Method of preparation of
chromplate, Experimental techniques, Superiority of
TCL over other chromatographic Techniques,
Application of TLC.
Gas chromatography; Introduction, Types, Principle of
GLC and GSC, Instrumentation, Carrier gas and
Solvent, Column and Detectors (Briefly), Advantages of
gas chromatography
Ion Exchange chromatography: Introduction,
Definition and Principle, Type of resins, Properties of ion
exchange resins, Factors affecting separation of ions, Ion
exchange capacity, Applications (Removal of interfering
ion, Softening of water, Demineralization of water,
Separation of lanthanides)

Course: Minor Chemistry Paper-3 [1-Credit Practical]

Sem	Unit No.	Syllabi	Teaching Hours
4	2	 Chromatography Atleast six practicals may be given. To determine Rf value of individual amino acids in a mixture of amino acid by ascending paper chromatography. To determine Rf value of individual and mixture of amino acid by circular paper chromatography. To determine Rf value of individual and mixture of amino acid by thin layer chromatography (TLC). To determine Rf value of individual and mixture of metal ions by ascending paper chromatography. To determine Rf value of individual and mixture of metal ions by circular paper chromatography. To determine Rf value of individual and mixture of metal ions by circular paper chromatography. To determine Rf value of individual and mixture of metal ions by circular paper chromatography. Separation of a mixture of o-and p-nitrophenol or o-and p-aminophenol by thin layer chromatography (TLC) Separation and identification of the monosaccharides present in the given mixture (glucose & fructose) by paper chromatography. Reporting the Rf values. 	30P

Major/Minor/Multidisciplinary

Syllabus of B.Sc. (Honors) as per NEP-2020

Faculty of Science

Effective from June 2024

Subject: Chemistry

SEMESTER-III & IV

Suggested Reading:

- 1. Principles of Inorganic chemistry Puri, Sharma & Kalia
- 2. Concise Inorganic Chemistry J. D. Lee
- 3. Advanced Inorganic Chemistry- Cotton and Wilkinson
- 4. Basic Inorganic Chemistry Gurdeep & Chatwal
- 5. Organic Chemistry (Volume I, II & III) by S.M. Mukherji, S.P. Singh and R.P. Kapoor
- 6. A Text Book of Organic Chemistry (II Edition) by Raj K. Bansal
- 7. Name Reactions in Organic Synthesis by Dr. A.R.Parikh et. Al
- 8. Reactions and Rearrangements by Gurdeep Chatwal
- 9. Essentials of Physical Chemistry, B. S. Bahl, G. D. Tli and Arun Bahl, S. Chand & Co. New Delhi
- 10. Elements of Physical Chemistry, Late B.R. Puri, L. R. Sharma and Madan
- 11. Pathania, Vishal Publishing Co. Jalandhar
- 12. Principles of Physical Chemistry, Samule H. Maron and Carl F. Prutton, Oxford & IBH Publishing Co. Pvt. Ltd. New Delhi
- 13. Physical Chemistry, B. K. Sharma, Goel Publication House. Meerut.
- 14. Quantum chemistry by A. K. Chandra
- 15. Basic Concept of Quantum Chemistry by R. K. Das.
- 16. Molecular Physical Chemistry by McQuarrie
- 17. Elements of Physical Chemistry, Samuel Glasstone and David Lewis, Macmillan & Co.
- 18. Engineering Chemistry by Jain and Jain
- 19. Industrial Chemistry by B.K. Sharma
- 20. Thermodynamics by Gurudeeep Raj
- 21. Thin Layer Chromatography by Egal Stall
- 22. Thermodynamics for Chemists by Samuel Glasstone
- 23. A Textbook of Quantitative Inorganic Analysis by A. I. Vogel
- 24. Inorganic inflictive analysis by Vogel and Gehani Parekh
- 25. Reigel's Handbook of Industrial Chemistry by James A. Kent
- 26. Fundamental of Analytical Chemistry by Skoog and West
- 27. Instrumental Methods of Chemical Analysis by B. K. Sharma
- 28. Instrumental Method of Chemical Analysis by Chatwal Anand
- 29. Analytical Chemistry by Dick
- 30. Electrometric Methods of Analysis by Browning
- 31. Principle of Instrumental Methods of Analysis by Skoog.
- 32. Mikes, O. & Chalmes, R.A. Laboratory Hand Book of Chromatographic & Allied
- 33. Methods, Elles Harwood Ltd. London.
- 34. DDDitts, R.V. Analytical Chemistry Methods of separation.
- 35. Jack T. Ballinger; Gersshon J. Shugar. Chemical Technicians' Ready Reference Hand book, 5th Edition, 2011, ISBN:9780071745925, The McGraw-Hill com, Incpanies

INTERNAL EVALUATION SCHEME					
NO	Particulars	Marks			
1	Mid Semester Exam (Mandatory)	25			
2	Class Test	05			
3	Open book exam/test	05			
4	Open note exam/test	05			
5	Self-test/ Online test	05			
6	Essay/Article writing	05			
7	Quizzes/Objective test	05			
8	Class assignment	05			
9	Home assignment	05			
10	Reports Writing	05			
11	Research/Dissertation	05			
12	Case Studies	05			
13	Viva/Oral exam	05			
14	Group Discussion	05			
15	Role Play	05			
16	Paper presentation/Seminar	05			
17	Language Lab work	05			
18	Interview	05			
19	Craft work	05			
20	Co-curricular work	05			
21	Field Assignment	05			
22	Poster Presentation	05			
23	Attendance	05			
24	Project Work	05			
	Total	50			

Note: Sr.No.1 is mandatory. Select any five from Sr.No.2 to 24. Each Contains five marks. Student should secure 18 Marks for passing in internal Exam.

For Major paper 5, 6, 8, and 9: 25 Mid-term + 25 CCE + 50 External Theory = 100

For Major paper-7 and 10 (Practical): 25 Mid-term (Practical) + 25 CCE + 50 External Practical; Exam = 100

Ques. No.	Particulars	From which Unit	Marks
1	Any two out of 3 questions (5 marks each)	1	10
2	Any two out of 3 questions (5 marks each)	2	10
3	Any two out of 3 questions (5 marks each)	3	10
4	Any two out of 3 questions (5 marks each)	4	10
5	Any two out of 4 questions (5 marks each)	One question	10
		From Each Unit	
		Total Marks	50

Paper Style (For B.Sc. Chemistry SEM- 3, 4)
